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Abstract

Talk 6 at the Matemale spring school on Witten’s finiteness conjecture
for skein modules. Themed around understanding the paper [GJS19], the
week was divided into talks as in [Det+].
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1 Overview and motivation

The main theorem of the paper is about skein modules, but it uses a slight
variation on these called internal skein modules. These are a slight enhancement
of skein modules, to be objects internal to some category (it will be a free
cocompletion of, in this case, the ribbon category A = Uq(SL2) − modf.d.).
Their description can be a little delicate and involves some category theory, but
they can be understood fairly topologically. But why are these enhancements
needed at all?

We saw in Talk 5 [Rom] that skein categories and relative skein module
functors form a TFT, so they have good gluing properties for bordisms. On the
other hand, ordinary skein modules do not have these properties in general: for
instance consider the schematic in Fig. 1 which suggests a skein in M need not
decompose neatly into skeins for the bordisms.
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Figure 1: A skein in H1 ∪Σ H2 might intersect the surface in a nontrivial way.

The internal skein modules we define will turn out to have good gluing
properties (Talk 10 [Häıa]). Then, to prove our main theorem, we will take a
Heegaard splitting of a closed 3-fold M = H1 ∪Σ H2,and write

Sk(M) = Skint(H1)⊗SkAlgint(Σ) Skint(H2). (1)

Then we will use an analytical theorem to show that the right-hand-side above
is finite-dimensional.

Remark 1. In fact, the gluing property does hold for ordinary skein modules
when we have a Heegaard splitting: this is because the gluing property works
for the TFT, and skein modules can be obtained from the TFT by taking
invariants, and it can be shown that handlebody modules are cyclic hence
generated by invariants. However, general gluing does not hold for non-internal
skein modules.

For finite-dimensionality, we use the following analytical theorem, which will
be described in Talk 12 [Kor].

Theorem 2 ([GJS19, Thm. 3.6]). Let X be a smooth Poisson scheme, and
L1, L2 ⊂ X be smooth Lagrangian subschemes. Then suppose that we are in the
situation of the diagram:

M2 x A y M1

L2 ⊂ X ⊃ L1

DQ DQDQ

where there are some further conditions on A,M1,M2 above. Where ~ is the
deformation parameter, then under these further conditions,

(M2 ⊗AM1)[~−1]

is finite-dimensional over C((h̄)).
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It is well-known (and will be reviewed in Talk 8 [Gra]) that Sk(Σ) is a
deformation-quantization of X(Σ), the character variety of Σ, which has a
Poisson structure. But unfortunately the character variety of a handlebody
does not in general define a smooth Lagrangian. On the other hand, where
H is a genus g handlebody, we will see that SkAlgint(Σ∗) is a DQ of G2g, and
Skint(H) is a DQ of Gg (Talk 9 [Kar]).

Then, in view of the finiteness proof, the two main advantages of internal
skein modules will be that they have good gluing properties for bordisms, and
quantize smooth geometric objects. Moreover, we will be able to pass from
the internal picture back to ordinary skein modules, allowing us to make our
finiteness statements in the context of th eoriginal conjecture.

2 Defining internal skein algebras

2.1 The defining property

To have functoriality for bordisms, we would like to be able to deal with skeins
that begin and end on the boundary of the surface. We will always be able to
collect skeins that meet the surface in several places into those meeting it in a
single strand, so we restrict to this case. To have a well-defined action, we will
need to puncture our surface and use disk-insertion.

Let A be a k-linear ribbon category, assume for simplicity it is semisimple
and has a fiber functor to Vect. Let Σ a surface, and Σ∗ = Σ − D̄. Then
there is an embedding Ann ↪→ Σ∗ around the puncture. Choose an embedding
i : D ↪→ Ann.

Definition 3. (Notation due to Jan Pulmann). Let V ∈ A. The space SkΣ∅
V

is the k-module spanned by isotopy classes of A-coloured ribbon graphs Γ ⊆
Σ∗ × [0, 1], such that ∂Γ ⊆ im(i) × {0} and ∂Γ is coloured by V , modulo the
A-skein relations.

See Figure 2a.
Now, we’d like to be able to consider the above spaces all together, for all

V ∈ A, and make them into an algebra A. What should we mean by this?
Recall that if A is semisimple, we will have A =

⊕
Vi, a direct sum over

isomorphism classes of simple objects Vi possibly with multiplicity. Where
HomA(Vi, A) is the multiplicity space and counts the multiplicity of the simple
object Vi in A, we have the “isotypic” decomposition

A =
⊕

simple

Vi ⊗HomA(Vi, A) (2)

=
⊕

V ⊗HomA(V,A)/(v ⊗ Φ ◦ f ∼ f(v)⊗ Φ, f : V →W ) (3)

where the first identification is tautological and in the second, we must account
for that fact that our sum is not only over simples. Now, in general this
object will live not in A but will be a colimit: so we will work in Â, the

3



(a) A graph ending on the boundary. (b) The stacking operation.

Figure 2: Internal skein algebras.

free cocompletion. Then to get the property we’d like, we will aim to construct
A ∈ Â such that, for all V ∈ A,

HomÂ(V,A) ∼= SkΣ∅
V . (4)

Having made this identification, we will then have a description of internal
skeins as

A =
⊕

V ⊗ SkΣ∅
V / ∼ .

The relation ∼ can be interpreted topologically: using that A has a fiber
functor to Vect, we can write elements of A as v⊗Γ, for v ∈ V and Γ ∈ SkΣ∅

V a
ribbon graph. Then if Γ has a coupon g on a single strand near the boundary,
the relations say that v⊗Γ should be identified with g(v)⊗Γ′, for Γ′ the ribbon
graph without g. Intuitively speaking, the relations allow us to absorb coupons
which don’t do anything interesting topologically into Σ, see Fig. 3. Later,
when we glue bordisms along Σ, they will equivalently allow us to slide such
coupons through the gluing surface.

Remark 4. The formula (3) is none other than a coend as introduced in Talk

5 [Rom]. This is the coend of the functor Id(−) ⊗ Hom(−, A) : A⊗Aop → Â.
One way to see this is that it is the object

A =

∫ V ∈A
V ⊗HomA(V,A)

with the universal property that it equalizes the two “actions” of A on itself by
Hom spaces: see [Lor20]. Once this notion is understood, the relations given
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Figure 3: The coend relation for v ⊗ Γ ∼ g(v)⊗ Γ′, depicted graphically.

A⊗A⊗A A⊗A k ⊗A A⊗A A⊗ k

A⊗A A A

1⊗µ

µ⊗1

µ

µ

η⊗1

µ
∼=

1⊗η

∼=

Figure 4: Algebras diagrammatically.

are clear, and indeed we would replace the direct sum formula with the coend
formula in the non-semisimple case.

Remark 5. This object may seem a little abstract. In the case A = Uq(G) −
modf.d., we have Â = Uq(G) − modl.f., and intuitively it makes sense that A
will be a locally finite module from the argument given here. Moreover, in Talk
7 [Häıb] we will see a more concrete definition of A. For the purposes of proving

facts about A, we will in this talk use the definition of Â as Fun(Aop,Vect).

2.2 The internal definition

Any kind of object which is usually described as a set equipped with some further
structures in terms of morphisms between its n-fold products can be made
internal to any monoidal category (recall monoidal categories from [Mar]).

For example, an algebra can be described as a vector space A together with
maps 1 : k → A,m : A⊗A→ A satisfying the diagrams in Fig. 4.

We can make this internal to categories which aren’t Vect: working with an
object in Rep(G) we have a G-equivariant algebra, for instance. Here are some
more topological examples.

Definition 6. The bicategory Mfld2 has

� objects: oriented smooth surfaces
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(a) The algebra structure on the disk.

(b) Algebra structure on the annulus. (c) The annulus acts on the disk.

Figure 5: Some objects internal to h1(Mfld2).

� 1-morphisms: oriented smooth embeddings

� 2-morphisms: isotopies of such, mod higher isotopy.

The category h1(Mfld2) has objects as above, and morphisms are isotopy
classes of embeddings. Both are symmetric monoidal under disjoint union.

Example 7. � The object D is an algebra object internal to h1(Mfld2).
(Fig. 5a.)

� The object Ann is an algebra, by stacking of annuli. (Fig. 5b.)

� It is clear that D is a module for Ann. (Fig. 5c.)

� The inclusion on the negative x-axis D ↪→ Ann is a map of algebras. (Fig.
6a, 6b.)

� Moreover, Ann acts on any punctured surface. Therefore, so does D, via
disk insertion. (Fig. 6c.)

Here is a more algebraic example.
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(a) i : D ↪→ Ann. (b) i is an algebra map.

(c) Actions on a punctured surface.

Figure 6: Further objects internal to h1(Mfld2).
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Figure 7: Two ribbon graphs that are distinct in RibC but are identified in the
skein category.

Example 8. A monoidal category C is like an algebra object in Cat, up to
some higher data that we will gloss over in this talk. A C-module category
is like a C-module object (not to be confused with left C-modules as functors
Cop → Vect). (Technically speaking, they are E1-algebras and modules.) We
say a functor F : C → D is (strong) monoidal if there are (natural) isomorphisms
η : 1→ F (1), µ : F (−)⊗ F (−)→ F (−) (perhaps satisfying some coherences).

Now we have the following.

Lemma 9. Fixing the data of a ribbon category A, the functor

SkCatA(−) : Mfld2 → Pr

is monoidal.

It is easy to see that SkCatA(D) ' A, since we recall from Talk 4 [Mar] that
the skein category is the quotient of RibA(Σ) by relations in A that hold in a
ball (i.e. D × [0, 1]). That is, referring to Fig. 7, in RibA we considered some
ribbon graphs that locally are the same morphism in A to be different, and
in the skein category they are identified (these are the A-skein relations, and
one can check that for Uq(sl2) the whole category is generated by the defining
representation and the KBSRs).

The skein category functor of Lemma 9 will be compatible with the higher
data involved in defining monoidal categories, module categories, etc: so it will
specify the structure of an A-module category on SkCatA(Σ∗). Here, the surface
Σ is fixed and is punctured; this gives an action of Ann in Mfld2, and an action
of D via the inclusion D ↪→ Ann.

Now, let P : A → SkCatA(Σ∗) be given by acting on ∅ ∈ SkCatA(Σ∗).

Definition 10 ([GJS19, Def. 2.18]). The internal skein algebra of Σ∗ is the
functor Aop → Vect given by

V 7→ HomSkCatA(Σ∗)(P(V ),∅)

so it is a left A-module.
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F (X)⊗ F (Y )⊗ F (Z) F (X)⊗ F (Y ⊗ Z) 1D ⊗ F (X) F (1)⊗ F (X)

F (X ⊗ Y )⊗ F (Z) A A

1⊗µY,Z

µX,Y ⊗1

µX⊗Y,Z

µX,Y⊗Z

η⊗1

µ1,X
λX

Figure 8: Some of the diagrams for lax monoidal functors.

Now it is easy to see that the object of Â we have defined has the universal
property (4), since using the Yoneda lemma we have

HomÂ(V,SkAlgint
A (Σ∗)) ∼= SkAlgint

A (Σ∗)(V ) ∼= SkΣ∅
V

writing V for its image Hom(−, V ) ∈ Â under the Yoneda embedding.
It remains to see that this object has an algebra structure. What are the

algebras in Â?

Definition 11. Let C,D be monoidal categories. The a lax monoidal functor
is a functor F : C → D equipped with data of a morphism η : 1D → F (1C) and
a natural transformation µ : F (−) ⊗ F (−) → F (− ⊗ −), both satisfying the
obvious coherences, such as those in Fig. 8 (cf. Fig. 4).

If η, µ are isomorphisms, we say F is strong monoidal; if they are identities,
F is called strict monoidal.

Proposition 12. The lax monoidal functors Aop → Vect are precisely the
algebra objects in Â.

The internal skein algebra has the stacking operation

HomSkCatA(Σ∗)(P(V ),∅)⊗HomSkCatA(Σ∗)(P(W ),∅)→ HomSkCatA(Σ∗)(P(V⊗W ),∅).

It is associative up to isotopy since disk insertion and concatenation are, and
similarly for unitality: see Fig. 2b. Then the object SkAlgint

A (Σ∗) is a lax
monoidal functor, with the required natural transformations being the images
of these isotopies under the skein category construction.

Example 13. Here is an almost-trivial example: we can work out what is the
internal skein algebra of the disk. This should be given by

SkAlgint
A (D) ∼=

⊕
V ∈A

V ⊗HomSkCatA(D)(V,1)

∼=
⊕
V ∈A

V ⊗HomA(V,1)

∼= 1

where we used the fact that SkCatA(D) ' A, and the universal property of the
coend formula (3).

In Talk 9 [Kar], we will see a more general way of computing the internal
skein algebra for any punctured surface.
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2.3 Recovery of ordinary skein algebra

Notice that, evaluating at 1, we do recover a module over EndA(1) = k, which
is clearly the ordinary skein algebra. So the ordinary skein module is obtained
by taking the value on 1.

In [GJS19], this is called “taking invariants”. The idea is that, for M ∈
Rep(G), then under the (contravariant) Yoneda embedding, we can regard M as

an object of R̂ep(G) (the object Hom(−,M), by abuse of notation also denoted
M). Then for any object of a free cocompletion we say “taking invariants”
means taking its value on 1.

2.4 Monadicity and adjoints

Suppose have an adjunction, F : C 
 D : FR with adjunction data (η, ε). When
the category C is monoidal and so is FRF , then the object FRF (1) can be given
an algebra structure, and one can consider the category LModFRF (1)(C). The

objects FR(X) can be given a module structure

FRF (1)⊗FR(V )
1⊗ηRF (V )−−−−−−→ FRF (1)⊗FRFFR(V ) ∼= FRF (1⊗FR(V )) ∼= FRFFR(V )

FRε−−−→ FR(V )

so that FR induces a functor D → LModFRF (1)(C). If this functor is an
equivalence then the functors of the adjunction are said to be monadic.

Now, we can use our coend formula (3) to produce right adjoints. Suppose
F has a right adjoint FR. Then we’d have

FR(X) =
⊕

V ⊗HomA(V, FR(X))/ ∼

=
⊕

V ⊗Hom(F (V ), X)/ ∼ .

In fact, where the last object exists, we can make this a definition

FR(X) :=
⊕

V ⊗Hom(F (V ), X)/ ∼

and then using the universal property one can see that it defines a right adjoint.
So when we work, for example, with free cocompletions, we have right adjoints
as defined this way.

2.5 Monadic description of SkAlgint(Σ∗).

Now, we have a functor P : A → SkCatA(Σ∗), and this induces a functor

Â → ̂SkCatA(Σ∗) which we denote, by abuse of notation, by P also. By the
above discussion, we then have that there is a right adjoint given by

PR(X) =
⊕

V ⊗Hom ̂SkCatA(Σ∗)
(P(V ), X)/ ∼ .

We then have that

PR(∅) ∼=
⊕

V ⊗Hom(P(V ),∅)/ ∼∼= SkAlgint
A (Σ∗).
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In fact, since P(1) = ∅, we can write

SkAlgint
A (Σ∗) ∼= PRP(1).

It then makes sense to consider the category LModSkAlgint
A (Σ∗)(Â). It is

shown in [BBJ18] that the adjunction given here is monadic.

Theorem 14 ([BBJ18]). There is an equivalence

LModSkAlgint
A (Σ∗)(Â) ' ̂SkCatA(Σ∗).

Suppose that X ∈ SkCatA(Σ∗), so that PR(X) ∈ Â. Then, using the
Yoneda lemma and the defining property, we have that

PR(X)(V ) = HomÂ(V,PR(X)) = HomSkCatA(Σ∗)(P(V ), X)

so we have that PR sends X to the functor HomSkCatA(Σ∗)(P(−), X).
We can see the module strucutre topologically. As before, by stacking, we

have a morphism

HomSkCatA(Σ∗)(P(V ),∅)⊗HomSkCatA(Σ∗)(P(W ), X)→ HomSkCatA(Σ∗)(P(V⊗W ), X).

giving a left SkAlgint-module structure on our functor (Fig. 9).
More specifically, we see that under PR, the object P(V ) ∈ SkCatA(Σ∗)

becomes a free left module:

PRP(V ) ∼= PRP(1⊗ V ) ∼= PRP(1)⊗ PRP(V )

using that PRP is monoidal.

3 Internal skein modules

Recall the following from Talk 5 [Rom].

Definition 15. Let N be a manifold with boundary Σ. The relative skein
module is the functor SkMod(N) : SkCatA(Σ)op → Vect which takes an object
of the skein category (i.e. a collection of objects labelling points on Σ) to the
k-module of ribbon graphs in N labelled by morphsisms of A, mod the skein
relations.

It is now straightforward, based on some of the ideas we have already seen
in this talk, to define internal skein modules.

Definition 16 ([GJS19, Def. 2.25]). The internal skein module of N is the
functor Aop → Vect given by Skint

A (N) = SkModA(N,−)◦P. It is a left module

object for SkAlgint in Â by stacking of skeins (Fig. 10b, 10c).
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Figure 9: The definition of a functor to LModSkAlgint(Σ∗)(Â).

(a) Handlebody
multiplicity spaces. (b) Stacking.

(c) Action of
SkAlgint(Σ∗).

Figure 10: Internal skein modules.

12



The idea is that, to give a well-defined algebra structure over which to define
our skein modules, we must insist that the points on the boundary where skeins
end are under control.

We also have the following more categorical argument. We’ve seen the
functor PR : SkCat(Σ∗) → LModSkAlgint(Σ∗)(Â). Then as we have seen, this
functor induces an equivalence

̂SkCatA(Σ∗) ' LModSkAlgint(Σ∗)(Â).

Now, the functor SkModA(N,−) : SkCat(Σ)op → Vect can be restricted to
a functor SkCat(Σ∗)op → Vect, and then uder this equivalence it should yield a
module over SkAlgint(Σ∗), which is precisely the internal skein module.
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